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FOREWORD

Charts which allow the easy and rapid determination of local skin friction from
experimental turbulent velocity profiles taken in air on smooth surfaces are presented.
The charts, calculated from the Fenter-Stalmach law of the wall, cover a Mach number
range from O to 5 and are good for all Reynolds numbers and total-temperature levels.
Caution should be employed when using these charts with profiles taken under conditions
of large heat transfer or pressure gradient because of the lack of reliable experimental
verification of the theory under these test conditions. The use of these charts requires
that the experimental profile be plotted on translucent paper to the same scale as the
charts presented in this report and overlaid on to the proper chart.
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INTRODUCTION

The most practical aspect of the compressible law-of-the-wall theory is that it
allows the graphical interpolation of local skin friction from compressible velocity pro-
files. A recent NASA publication (ref. 1) has shown that two such theories, Baronti-Libby
(ref. 2) and Fenter-Stalmach (ref. 3), give good results over the supersonic Mach number
range, and that the necessity of hand plotting the data and theory could be eliminated by
programing these law-of-the-wall methods on a high-speed digital computer. Without
computer help, however, these methods are tedious to apply because of the lengthy calcu-
lations involved, The Baronti-Libby method, for example, requires different theory
curves for each local free-stream Mach number and integration of the experimental
velocity profile. The Fenter-Stalmach method also requires different theory curves for
each Mach number, These curves are not linear for compressible flow; thus, many cal-
culations are involved in order to obtain them. This method, however, requires no inte-
gration of the velocity profile, and thereby the experimental data are easier to handle than
in the Baronti-Libby method.

Since the tedious part of using the Fenter-Stalmach law is calculating and plotting
the theory curves, this paper presents these curves in convenient graphical form for a
wide range of test conditions. All that is required to use these curves is to plot the
experimental profile on translucent graph paper which has the same scale as the figures
reproduced in this paper. (The scale used herein is the same as that obtained on com-
mercially available graph paper.) Overlaying the experimental profile on to the proper
figure allows the graphical interpolation of local skin friction by the Fenter-Stalmach law.



SYMBOLS

T
Ct local skin-friction coefficient, -1-——VL—2
3 Pete
f(n) Coles' incompressible law-of-the-wall function (see table I)
M Mach number
u
R unit Reynolds number, pi €
e
u
Ry Reynolds number based on y, peu e¥
e
T absolute temperature
u velocity in longitudinal direction
y vertical distance from wall
Y ratio of specific heats (1.4 for air)
n normal coordinate in law-of-the-wall profile, wv‘r—w
Hw | Py
U viscosity
p density
v -1 2
—— Mg
o compressibility function in Fenter-Stalmach law of the wall, — -T2
1+ Me
2
T shearing stress
Subscripts:
aw adiabatic wall conditions
e edge of boundary-layer conditions




t free-stream stagnation conditions
w wall conditions
DISCUSSION

Fenter-Stalmach Law of the Wall

The Fenter-Stalmach law of the wall is given by equation (11) of reference 3 as

___ue in-1 L P
o (B &)= 1) (1)
Py
where
_ YPw [Tw

The function f(n) is Coles' incompressible law of the wall (see ref. 4) and is reproduced
in table 1.

Making use of the definition of local skin-friction coefficient results in

Tw _ [Pe [Ctf
\/%‘/%/—T_“e (3)

Using equation (3) in equations (1) and (2) yields

JE E sin2 (5 &) - 1) (4)
pr“er J—- (5)

and

or, rearranging equation (4) yields

_ si Ct [P
&= —Siﬁn[vaf(n) JZ:/%J (6)

and rewriting equation (5) yields



Assuming constant static pressure across the boundary layer gives

Pw _ Te
Also, by definition
YPele
R, = 2fe¢
y =0 (©)

Therefore, equations (6) and (7) become

u _ sin Ct Tw
Ue 5 'iﬁ'ff(n) /—2— Tejl (10)
o Te [Ct
"= ﬁRYVT%/'z-“ (1)

Reference 1 reports that the Fenter-Stalmach law does not yield good results under
large heat-transfer conditions and that better results were obtained if the nonadiabatic
profiles were assumed to be adiabatic. This paper therefore makes the assumption that

adiabatic conditions exist; this assumption results in ¥ = 7% = 1 4 0.176Me2 for
e e

Y = 1.4 and a turbulent recovery factor of 0.88. Inserting these values and the definition
of ¢ into equations (10) and (11) results in

u 5 + M2 sin Meh +0.176M¢2 ) (G (12)
u, M
© e V10 + 2M 2

and

and

2
be 1 _ V2 +0.352M, . (13)

hy Y \/C_f

Scales Used for Plots

The left-hand side of equations (12) and (13) were used as the Fenter-Stalmach
parameters. The viscosity ratio “e/“w was included in the second parameter
so that the plots would be independent of the total-temperature level. Plots of the
Fenter-Stalmach law were prepared from Mach 0 to 5 in increments of 0.2 and are pre-
sented in figures 1 to 26. These charts were plotted on semi-log paper, the scale of
the ordinate u/ue being 0.0 to 1.0 covering 5 inches (127.0 mm) of grid, and the scale

of the abscissa %i Ry being 2-inch (50.8 mm) log cycles. This size of graph paper
w

is commercially available.
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Viscosity Ratio

The use of this technique requires that the experimental velocity profile be used in
the form of the variation of u/ue with Z—e Ry. The viscosity ratio can be calculated
from Sutherland's viscosity law as v

1.5
He _(Te\ " Tw + 199 (14)
Iy \Ty/) Te+199

where Ty and Te are in degrees Rankine, By assuming adiabatic conditions and a
turbulent recovery factor of 0.88, equation (14) can be written as

Be _ Mo _ Tt+0.176Me2T¢ + 199 + 39.8Mg2
Hw Haw (

(15)
2 1.5 2
1+ 0.176Me2) " (Tt + 199 + 39.8M,2)

Equation (15) has been used in preparing figure 27, which allows the rapid determination
of the viscosity ratio for the test conditions of the experimental velocity profile.

Sample Profile

To illustrate the use of the plots presented in this paper, the sample profile used in
reference 1 is presented in table II. The local free-stream conditions of this profile are
M = 2.20, R =0.1764 x 106/cm, and Tt = 3160 K = 570° R.

From figure 27, the viscosity ratio “e/“w is found to be approximately 0.600,

which yields ﬁﬁ— R to be 0.1058 x 106/cm. The parameter He Ry can now be cal-
w

m
culated from the experimental profile and is also listed in table“{I.

Figure 28 shows this profile superimposed over the theory curves of figure 12,
which are the curves for Mg = 2.20. The skin friction for this profile is determined
from data for which Cf is relatively constant, that is, from the data which are parallel
to the theory curves, This region is easy to detect in this profile and yields a local
skin-friction coefficient, determined by interpolation between the theory curves, of
approximately 0.001430. Also shown in this figure is the value of Cg (0.001404) which
was measured for the same test conditions by a skin-friction balance.

This sample profile has an edge Mach number of 2.20, which happens to be the same

as one of the charts presented in this paper. For profiles taken at Mach numbers between
these charts, interpolation between the two closest Mach numbers can be performed.

It can be seen from figure 28 that the range of data which is parallel to the theory
curves is relatively small compared with the total amount of data in the profile. The data
above this parallel region are outside the range of validity of the law of the wall and there-
fore would not be expected to yield constant skin-friction values. The reason the data
below this region are not parallel is less clear since, in theory, the region of applicability
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of the law of the wall should extend all the way through the lower part of the boundary
layer to the wall. It is believed that the characteristic exhibited is probably due to
experimental inaccuracies that are magnified as the wall is approached.

Limitations of Technique

The abscissa used here z—e— Ry was chosen so that no restrictions would be
w

placed on the Reynolds number and total-temperature ranges of applicability of this
technique. The plots contained in this paper cover a Mach number range from 0 to 5.
The law of the wall has been used at higher Mach numbers (ref. 5, for example), but
only in the supersonic Mach number range is enough data available to give confidence
in the Fenter-Stalmach law as a skin-friction-measuring technique.

Other restrictions which are placed on this technique are as follows:
(1) The fluid medium must be air since a y of 1.4 was used in this paper.

(2) The test surface on which the velocity profile is obtained must be ""smooth in
the aerodynamic sense. Surface roughness changes the basic law of the wall (ref. 6, for
example); therefore, the Fenter-Stalmach law could not be expected to give good results
on rough surfaces.

(3) Caution should be employed in using this technique with profiles taken under
conditions of large heat transfer. From the limited amount of cold-wall data available,
reference 1 reported large differences between the measured skin friction and that cal-
culated from velocity profiles using the Fenter-Stalmach law. The disagreement was as
much as 70 percent at a Tw/Taw value of about 0.6. Assuming the profiles to be adia-
batic improved the agreement somewhat, the maximum difference being reduced to about
40 percent, This value is still much larger, however, than the +5-percent disagreement
which was obtained (ref. 1) from the large amount of adiabatic wall data available.

(4) Also, caution should be employed in using this technique with profiles taken in
flows with large pressure gradients. The incompressible law of the wall has been shown
to be valid in pressure gradient flow. (See ref. 7, for example.) It could be expected,
therefore, that a compressible law of the wall, such as the Fenter-Stalmach law, also
would be valid under pressure gradient conditions. Little experimental evidence is avail-
able, however, to verify this assumption.

CONCLUDING REMARKS

Charts are presented which allow the easy and rapid determination of local skin
friction from experimental turbulent velocity profiles taken in air on smooth surfaces.




The charts, calculated from the Fenter-Stalmach law of the wall, cover a Mach number
range from 0 to 5 and are good for all Reynolds numbers and total-temperature levels,
Caution should be employed when using these charts with profiles taken under conditions
of large heat transfer or pressure gradient because of the lack of reliable experimental
verification of the theory under these test conditions. The use of these charts requires
that the experimental profile be plotted on translucent paper to the same scale as the
charts presented in this report and overlaid on to the proper chart.
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TABLE I.- COLES' INCOMPRESSIBLE LAW OF THE WALL

2= f(np) (ref. 4)

n £(n) 7 £(n)
0 0 44 14.51
1 .99 50 14.87
2 1.96 60 15.33
3 2.90 80 16.04
4 3.80 100 16.60
5 4.65 150 17.61
6 5.45 200 18.33
7 6.19 300 19.34
8 6.87 400 20.06
9 7.49 500 20.62
10 8.05 600 21.08
12 9.00 800 21.79
14 9.76 1 000 22.35
16 10.40 1 500 23.36
18 10.97 2 000 24.08
20 11.49 3 000 25,09
24 12.34 4000 25,81
28 12.99 5 000 26.37
32 13.48 6 000 26.83
36 13.88 8 000 27.54
40 14.22 10 000 28.10

TABLE II.- SAMPLE VELOCITY PROFILE

u u
C};;l ﬁ Ry llll_e' c};ﬁ ﬁ Ry f‘g

0.0114 1.206 x 103 0.5468 0.7277 7.699 x 104 0.8018
.0165 1.746 .5623 .8547 9.043 .8135
.0216 2.285 5764 1.0071 1.066 x 105 .8297
.0266 2.814 .5870 1.1595 1,227 .8432
.0368 3.893 .6028 1.3500 1.428 .8592
.0455 4.814 .6163 1.5151 1.603 .8709
.0546 5.777 6276 1.7056 1.805 .8860
0673 7.120 .6405 1.8961 2.006 .8982
.0800 { 8.464 .6515 2.0866 2.208 9128
.0927 | 9.808 6604 || 2.2771 | 2.409 .9223
.1181 1.249 x 104 .6776 2.5311 2.678 .9376
.1434 1.517 8912 2.7978 2.960 9527
.1687 1.785 7013 3.0518 3.229 .9649
.1943 2.056 L7114 |] 3.3058 | 3.498 .9749
.2196 2.323 L1197 3.5598 3.766 .9836
.2578 2.728 7296 3.8138 | 4.035 .9885
.3085 3.264 1410 || 4.1948 | 4.438 .9925
L3722 3.938 L7531 4.8298 5.110 .9969
4483 4.743 .71649 5.5918 5.916 .9991
.5245 5.549 L1768 6.3538 6.722 1.0003
6134 6.490 .7884 7.1158 7.529 1.0000
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